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Abstract

This paper addresses a new approach for designing automotive suspension systems, based on the theory of multi-

objective programming together with the theory of robust design. A two-degrees-of-freedom (2 dof) linear model is used to

describe the dynamic behaviour of vehicles running on randomly profiled roads. The road irregularity is considered a

Gaussian random process and modelled by means of a simple exponential PSD. The performance indices considered are

discomfort, road holding and working space. The design variables to be optimised are the suspension stiffness and

damping (passively suspended vehicle) and the controller gains (actively suspended vehicle). The mass of the vehicle’s body

and the tyre radial stiffness are considered as stochastic parameters, together with the design variables (stochastic design

variables). The optimal trade-off solutions (Pareto-optimal solutions) are derived in a stochastic framework and, whenever

possible, in a non-dimensional analytical form. The analytical expressions are derived by means of a new method based on

the Fritz John necessary condition.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The paper presents a theoretical investigation on the dynamic behaviour of passively and actively suspended
road vehicles. The main aim of the paper is to describe in the simplest possible mathematical way (i.e. in
analytical form) the basic relationships between vehicle parameters and vehicle performance indices and to
define in a rigorous way the best compromise among these indices within a deterministic and stochastic
optimisation framework.

Many Authors (see Refs. [1,2]) have attempted the derivation of basic engineering rules useful for the
preliminary design of road vehicle suspension systems (active and/or passive). These are generally based on
purely numerical computations, even when dealing with very simple vehicle system models. The analytical
derivation of simple formulae for the estimation of the dynamic response of road vehicles running on
randomly profiled roads is possible in fact only for simple linear vehicle models with 1 or 2 degrees of freedom
(dof). According to Ref. [3] the so-called ‘‘quarter-car model’’ (2 dof) has proved to estimate with reasonable
accuracy the dynamic behaviour of an actual road vehicle in terms of discomfort, road holding and working
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

Ab road irregularity parameter (m)
AS actively suspended vehicle
CV coefficient of variation CV ¼ sf i

=f i

f i; hi mean value of the performance index
g1 controller gain ðx2 � x1Þ (N/m)
g2 controller gain _x2 (Ns/m)
j j ¼

ffiffiffiffiffiffiffi
�1
p

k1 tyre radial stiffness (N/m)
k2 suspension stiffness (N/m)
m1 unsprung mass (kg)
m2 sprung mass (kg)
MOP multi-objective programming
PS passively suspended vehicle
q ratio between unsprung and sprung

mass
r2 suspension damping (Ns/m)
v vehicle speed (m/s)

x1 body m1: absolute vertical displacement
(m)

x2 body m2: absolute vertical displacement
(m)

ai percentile value ai ¼ F�1ðbiÞ

bi tolerable level of risk ðfailure probability
¼ 1� biÞ

x imposed vertical displacement (m)
sFz standard deviation of the road/wheel

vertical force (road holding) (N)
s €x2 standard deviation of the vehicle body

acceleration (discomfort) ðm=s2Þ
sx2�x1 standard deviation of the suspension

stroke (working space) (m)
sf i
; shi

standard deviation of the performance
index

F�1ð�Þ inverse of the standard normal distribu-
tion

o circular frequency, (rad/s)
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space. In almost all the cited papers the road irregularity has been described by means of a very simple
exponential power spectral density (PSD), the so-called ‘‘one slope PSD’’. More accurate estimates of the
amplitudes of the road irregularity, especially at low excitation frequencies, can be achieved by referring to
more complex power spectral densities, see Refs. [4,5]. In Refs. [6,7] the so-called ‘‘two slope PSD’’ [2,8] has
been used, however, this has shown that an analytical approach is rather impractical. For these reasons in the
present paper a 2 dof linear vehicle suspension model has been employed and the simple ‘‘one slope PSD’’ has
been considered.

The definition of the best compromise among conflicting performance indices is not straightforward and
multi-objective programming (MOP) has to be used as the proper theoretical basis. In Refs. [9–11] important
analytical relationships are highlighted among vehicle suspension parameters and suspension performance
indices. In Refs. [6,7] MOP has been used to find the optimal suspension tuning within a deterministic
framework. The results are significant; however, the robustness of the optimal solutions is not guaranteed. The
spring stiffness and damping rate may, in fact, vary with respect to the nominal value due to production
tolerances and/or wear, ageing... The vehicle body mass and the tyre radial stiffness can have stochastic
variations due to the variety of possible vehicle loading conditions and to the uncertainty of the inflating
pressure of poorly maintained tyres. The uncertainties in the parameters and/or design variables are
transmitted to the performance indices so that they too have a stochastic nature. Therefore, an optimal design
based on a deterministic approach may turn out to be not robust, leading to substantial unexpected
performance deterioration. As observed by many authors [12], optimal designs based on deterministic
approaches are often prone to be the most sensitive to uncertainty in the parameters. For this reason a new
optimisation method adapted from Ref. [13], based both on MOP and robust design theory (stochastic multi-
objective optimisation) is introduced and applied for the computation of the best trade-off among conflicting
performance indices pertaining to the vehicle suspension system. The stochastic multi-objective optimisation
method employed in the paper involves the simultaneous optimisation of the mean and standard deviation of
the performance indices.

Firstly, the performance indices for the quarter car model (road holding, discomfort, working space) in non-
dimensional form are derived as a function of the suspension parameters (stiffness, damping, controller gains).
Then, a deterministic and a stochastic multi-objective optimisation method are described. A new approach is
introduced to derive, in analytical form, the Pareto-optimal sets. Robust and non-robust design solutions are
compared. The results, which are presented, can be useful for academic purposes as well as by designers that
may take advantage from the simple and very general theory described.
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2. System model: equations of motion and response to stochastic excitation

The adopted quarter-car system model for passively (PS) and actively (AS) suspended road vehicles is
shown in Fig. 1. The mass m1 represents approximately the mass of the wheel plus part of the mass of the
suspension arms, m2 represents approximately 1

4
of the body mass [3,14] and k1 is the tyre radial stiffness. k2

and r2 are, respectively, the linear stiffness and damping of the suspension and g1 and g2 are the controller
gains of the actuator. The excitation comes from the stochastic road irregularity x. The linear equations of
motions of the system are

m1 €x1 � r2ð _x2 � _x1Þ � k2ðx2 � x1Þ þ k1ðx1 � xÞ � Fact ¼ 0,

m2 €x2 þ r2ð _x2 � _x1Þ þ k2ðx2 � x1Þ þ F act ¼ 0. ð1Þ

The actuator force is assumed to be a function of the relative displacement wheel–vehicle body and of the
absolute velocity of the vehicle body mass m2 (passive spring and simple skyhook damping)

Fact ¼ g1ðx2 � x1Þ þ g2 _x2. (2)

Although very simple (in order to allow an analytical approach), the considered model is generally reputed
sufficiently accurate for capturing the essential features related to discomfort, road holding and working space
(see Ref. [3]).

For the PS model the design variables are k2 and r2. The actuator force disappears by setting g1 ¼ g2 ¼ 0.
For the AS model, instead, the design variables are g1 and g2, and k2 and r2 are set to zero. In particular, k2

disappears because its effect is actually the same as that of g1. r2 is set to zero for simplicity. Specifically, the
so-called ‘‘Modified Skyhook Damping’’ strategy (r2a0) has not been considered due to the complexity of the
derived analytical expressions.

The displacement x (road irregularity) may be represented by a random variable defined by a stationary and
ergodic stochastic process with zero mean value [4,5]. The PSD of the process may be determined on the basis
of experimental measurements and in the literature there are many different formulations for it, see Refs. [2,4].

In the present paper for sake of simplicity the following spectrum has been considered

SxðoÞ ¼
Abv

o2
. (3)

In a log–log scaled plot (abscissa o), the spectrum of Eq. (3) takes the shape of a line with gradient �2.
By adjusting the parameter Ab, Eq. (3) approximates various roads with a satisfactory degree of accuracy
(it generally overestimates the amplitudes of the irregularity at low frequencies). A better correlation with
measured spectra can be obtained by resorting to more complex expressions as, for example, the so-called
‘‘two slopes spectrum’’ (see Ref. [4]). However, by employing a more complex spectrum only a numerical
solution can be found.
g1g2

k1

m2

m1

k2 r2

x2

x1

ξ

Fig. 1. Simplified vehicle model.
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The outputs of the vehicle model are the vertical vehicle body acceleration ( €x2), the force applied between
road and wheel (F z) and the relative displacement between wheel and vehicle body (x2 � x1). Discomfort (s €x2 ,
standard deviation of €x2, see Ref. [8]), road holding (sFz , standard deviation of Fz, see Ref. [10]) and working
space (sx2�x1 , standard deviation of x2 � x1, see Ref. [6]) are the performance indices to be minimized.

The PSD Sl of the output of an asymptotically stable system can be computed as (see, e.g. Ref. [15])

SlðoÞ ¼ jHlðjoÞj2SxðoÞ l ¼ 1; . . . ; 3. (4)

for l ¼ 1, Sl represents the PSD of the vertical acceleration of the vehicle body and Hl represents the transfer
function between x and €x2, for l ¼ 2, Sl is the PSD of the vertical force at the wheel–road interface and Hl is
the transfer function between x and Fz, and for l ¼ 3, Sl represents the PSD of the relative displacement
chassis-wheel (suspension stroke) and Hl represents the transfer function between x and x2 � x1.

By definition (see Refs. [15,16]) the variance of a random variable described by a stationary and ergodic
stochastic process (whose PSD is Sl) is

s2l ¼
1

2p

Z þ1
�1

SlðoÞdo, (5)

where sl refer, respectively, to s €x2 , sFz , sx2�x1 . In this way it is possible to derive the analytical expressions of
the three performance indices for both the PS and the AS vehicle models.

2.1. Formulae referring to the passively suspended (PS) vehicle

The analytical formulae giving the performance indices of a PS vehicle (g1 ¼ g2 ¼ 0) have been already
derived and presented in Refs. [6,10,17]. These formulae can be simplified by introducing the following non-
dimensional variables

q ¼
m1

m2
; Kx ¼ k2

ð1þ qÞ2

k1q
; Rx ¼ r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ qÞ3

k1m2q

s
. (6)

The performance indices for the PS vehicle model are the following:
�
 Standard deviation of the relative displacement between wheel and vehicle body x2 � x1 (working space)

sx2�x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2Abv

p
f 1; f 2

1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ð1þ qÞ5

k1q

s
1

Rx

� �
. (7)
�
 Standard deviation of the vehicle body acceleration €x2 (discomfort)

s €x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2Abv

p
f 2; f 2

2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3
1q

3

m3
2ð1þ qÞ3

s
K2

x

Rx

þ
Rx

q

� �
. (8)
�
 Standard deviation of the force acting between road and wheel Fz (road holding)

sFz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2Abv

p
f 3; f 2

3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3
1m2q3ð1þ qÞ

q
ðKx � 1Þ2

Rx

þ
1

q
Rx þ

1

Rx

� �� �
. (9)
2.2. Formulae referring to the actively suspended (AS) vehicle

The analytical formulae giving the discomfort, road holding and working space for the AS vehicle model
ðk2 ¼ r2 ¼ 0Þ are given in Ref. [7]. These formulae can be written in a more compact expression by introducing
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the following non-dimensional variables

q ¼
m1

m2
; G1x ¼ g1

ð1þ qÞ

k1
; G2x ¼ g2

ffiffiffiffiffiffiffiffiffiffiffi
q

k1m2

r
. (10)

The performance indices for the AS vehicle model are the following:
�
 Standard deviation of the relative displacement between wheel and vehicle body x2 � x1 (working space)

sx2�x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2Abv

p
h1; h2

1 ¼
m2qð1þ qÞ2

k1

� �1=2
1

G1x

1

G2x

þ G2x 1þ
1

q

� �� �
. (11)
�
 Standard deviation of the vehicle body acceleration €x2 (discomfort)

s €x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2Abv

p
h2; h2

2 ¼
k3
1q

m3
2ð1þ qÞ2

 !1=2
G1x

G2x

. (12)
�
 Standard deviation of the force acting between road and wheel F z (road holding)

sFz ¼

ffiffiffiffiffiffiffiffiffiffiffi
1

2
Abv

r
h3; h2

3 ¼ ðk
3
1m2ð1þ qÞ2qÞ1=2

ðG1x � 1Þ2

G1xG2x

þ
G2x

G1x

þ
1

G2xð1þ qÞ

� �
. (13)

3. Multi-objective robust optimisation

3.1. Deterministic formulation

The MOP theory, see Ref. [18] for details, refers to the minimisation of a vector of objective functions
ðf ¼ ½f 1; f 2; . . . ; f k�Þ that depend on a vector of design variables ðz ¼ ½z1; z2; . . . ; zn�Þ defined into a feasible
domain ðZÞ

min f ðzÞ ¼ minðf 1ðzÞ; f 2ðzÞ; . . . ; f kðzÞÞ

with

z ¼ ½z1; z2; . . . ; zn� 2 Z. (14)

Generally, the objective functions are conflicting, therefore there is no obvious optimal solutions. There is
not a single solution, as in a single objective problem, but a set of optimal or efficient solutions, that is called
Pareto-optimal set. For a solution belonging to the optimal set it is not possible to improve one objective
function without worsening at least another one. The Pareto-optimal set represents the best obtainable
compromises between all the conflicting objective functions. So, the designer has to choose one single final
solution among this set.

In recent years many authors have proposed numerical methods for the computation of the Pareto-optimal
set. They are mainly based on Monte-Carlo search procedures [19,20], on constrained optimisation
approaches or on the use of aggregate functions [18,21].

3.2. Stochastic formulation

Deterministic optimisation techniques have been employed to solve a wide variety of mechanical
engineering design problems. However, actual systems are subject to variations and uncertainties that arise
from a variety of sources, i.e. manufacturing processes, external disturbances, operating conditions. For this
reason almost every engineering design should be performed within a stochastic framework.
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A stochastic system is described by a mathematical model in which there are some random quantities
subject to uncertainty. These quantities may be parameters (c), whose values are not under the designer’s
control, or design variables (z), whose expected (i.e. mean) value can be freely defined by the designer. The
uncertainties on the parameters and the design variables are transmitted to the performance indices and so
they have a stochastic nature too. We will indicate with f iðz; cÞ the stochastic performance index whose mean
value and variance can be estimated as

f i ¼ f iðmz; mcÞ; s2f i
¼
Xn

i¼1

qf i

qzi

� �2

s2zi
þ
Xm

i¼1

qf i

qci

� �2

s2ci
. (15)

When considering a stochastic system, the Pareto-optimal solutions can be obtained by transforming the
original stochastic problem into an equivalent deterministic problem [13]. The formulation of the equivalent
deterministic problem adopted in the present paper is known as the Kb formulation or b-efficient problem

Given the probabilities b1; b2; . . . ; bk

find minðu1; u2; . . . ; ukÞ

such that Probðf iðz; cÞpuiÞXbi with i ¼ 1; 2; . . . ; k. ð16Þ

The probabilities bi describe the tolerable level of risk (fixed by the designer) that the performance of the
optimal solutions will be worse than expected (the failure probability is F:P: ¼ 1� bi). This formulation seems
to be the best for many engineering problems in which, in general, the levels of risk are fixed by standards or
good design practice while little is known about the maximum obtainable performances. If it is assumed that
the performance indices have normal distribution, the Kb problem can be converted [13] to the so-called Ka

problem or b-efficient problem with normal distribution

Given the probabilities b1; b2; . . . ; bk

find minðf̄ 1ðz; cÞ þ a1sf 1 ðz; cÞ; f̄ 2ðz; cÞ þ a2sf 2ðz; cÞ; . . . ; f̄ kðz; cÞ þ aksf k
ðz; cÞÞ

with ai ¼ F�1ðbiÞ for i ¼ 1; 2; . . . ; k, ð17Þ

where the function F�1ð�Þ is the inverse of the standard normal distribution and the percentile ai corresponds
to the objective function f i. So the robust design approach [22] involves the optimisation of a weighted sum of
mean f̄ i and standard deviation sf i

of the performance indices.

3.3. Analytical method to find Pareto-optimal solutions

The analytical expression of the Pareto-optimal set can be derived by the Fritz John necessary condition for
unconstrained Pareto optimality [18]. Let the performance indices of problem (14) be continuously
differentiable at a decision vector z� 2 Z. A necessary condition for z� to be Pareto optimal is that there exist a
vector 0ol 2 Rk such that

Xk

i¼1

lirf iðz
�Þ ¼ 0. (18)

By writing the Jacobian matrix of the objective functions as

rF ¼ ½rf 1 rf 2 . . . rf k� ¼

qf 1

qz1
� � �

qf k

qz1

..

. . .
. ..

.

qf 1

qzn

� � �
qf k

qzn

2
6666664

3
7777775

(19)

the Fritz–John condition can be simply re-written as

rFl ¼ 0) ðrFTrF Þl ¼ 0) detðrFTrF Þ ¼ 0. (20)
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If n ¼ k ¼ 2 Eq. (20) leads to

qf 1

qz1

qf 2

qz2
¼

qf 1

qz2

qf 2

qz1
. (21)

The Pareto-optimal set is therefore the curve described by Eq. (21) bounded by the two minima of the two
objective functions. This equation allows the computation of the analytical expression of the Pareto-optimal
set in a very effective way. This mathematical procedure will be used in Sections 5 and 6.

4. Stochastic performance indices

For the PS vehicle the design variables to be optimised are the stiffness k2 and the damping r2 of the
suspension system. They are considered as stochastic design variables, that is, their mean value is given but
their actual value may vary randomly following a normal distribution. For the AS vehicle, the design variables
are the gains g1 and g2. They are considered as deterministic quantities. The vehicle body mass m2 and the tyre
radial stiffness k1 are considered as stochastic parameters due to the variety of possible loading conditions and
to the variability of the tyre pressure. The unsprung mass m1 is instead a deterministic parameter. The
variability of all stochastic parameters and design variables are described by the coefficients of variation
CVi ¼ si=mi (s standard deviation, m mean value). The values of the coefficients of variation CVi have been
selected according to the data available in literature [23,24] and their values turned out to be 3% for the spring
stiffness and 10% for the damping coefficient, the tyre radial stiffness and the sprung mass.

The adopted reference values, variation ranges and CVi of the design variables and of the parameters are
reported in Table 1. The mean values of the performance indices are f i and hi (Eqs. (7–9), (11–13)), the
standard deviations sf i

and shi
are computed in analytical form by means of Eq. (15).

4.1. Stochastic performance indices for the passively suspended vehicle

The stochastic performance indices for the PS vehicle, derived by means of the Ka formulation (see
Eq. (16)), are the following

Working space:

sx2�x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2Abv

p
� f 1,

f 1 ¼ f 1 þ a1sf 1 ¼
m2ð1þ qÞ5

k1q

� �1=4

F1xðRx;Kx; q; a1Þ. ð22Þ

Discomfort:

s €x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2Abv

p
� f 2,

f 2 ¼ f 2 þ a2sf 2 ¼
k3
1q

3

m3
2ð1þ qÞ3

 !1=4

F2xðRx;Kx; q; a2Þ. ð23Þ
Table 1

Design variables and parameters

Units Reference value Lower–upper bounds CV

k2 (N/m) 25000 0–80 000 .03

r2 (Ns/m) 1000 0–5000 .10

g1 (N/m) — 0–700 000 —

g2 (Ns/m) — 0–50 000 —

k1 (N/m) 120 000 — .10

m2 (kg) 229 — .10

m1 (kg) 31 — —
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Road holding:

sFz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2Abv

p
� f 3,

f 3 ¼ f 3 þ a3sf 3 ¼ ðk
3
1m2q3ð1þ qÞÞ1=4F3xðRx;Kx; q; a3Þ, ð24Þ

where ai are the percentiles of the three performance indices (Eq. (17)).
Since the functions F ix do not depend directly on k1, m1 and m2, Eq. (21) states that the Pareto-optimal set,

in the plane of the non-dimensional variables Rx and Kx, depends only on ai and q.

4.2. Stochastic performance indices for the actively suspended vehicle

The stochastic performance indices of the AS vehicle, derived by means of the Ka formulation, are the
following

Working space:

sx2�x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2Abv

p
� h1,

h1 ¼ h1 þ a1sh1 ¼
m2qð1þ qÞ2

k1

� �1=4

H1xðG1x;G2x; q; a1Þ. ð25Þ

Discomfort:

s €x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2Abv

p
� h2,

h2 ¼ h2 þ a2sh2 ¼
k3
1q

m3
2ð1þ qÞ2

 !1=4

H2xðG1x;G2x; q; a2Þ. ð26Þ

Road holding:

sFz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2Abv

p
� h3,

h3 ¼ h3 þ a3sh3 ¼ ðk
3
1m2qð1þ qÞ2Þ1=4H3xðG1x;G2x; q; a3Þ, ð27Þ

where ai are the percentiles of the three performance indices (Eq. (17)).
Since the functions Hix do not depend directly on k1, m1 and m2, the pareto-optimal set, in the plane of the

non-dimensional variables G1x and G2x, will depend only on ai and q.

5. Pareto-optimal set for the PS vehicle

The considered design variables are Kx and Rx, the functions to be minimised are f 1, f 2 and f 3 (Eqs.
(22–24)). The following subsections describe the computation of the Pareto-optimal set in the domain of the
design variables for the combinations of two performance indices, namely: s €x2 -sFz ;s €x2 -sx2�x1 ; sFz -sx2�x1 . The
Pareto-optimal set in the plane of the performance indices can be easily derived by substituting the optimal
design variables values into the performance indices expressions.

5.1. Suspension parameters for optimal s €x2 ;sFz

The minima of the road holding ðsFz Þ in the deterministic case ða3 ¼ 0Þ is obtained (see Eq. (9)) by setting

Kx ¼ 1; Rx ¼ 1. (28)

For the stochastic problem the analytical expressions of Kx and Rx which define the minima of the road
holding appear to be too involved to be presented here. Approximate expressions are provided in Appendix.

The minima of the discomfort ðs €x2Þ is at the point defined by

Kx ¼ 0; Rx ¼ 0 (29)
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for both the deterministic and the stochastic problems. The analytical expression of the Pareto-optimal set in
the deterministic case can be derived by means of Eq. (21)

qf 2

qKx

qf 3

qRx

¼
qf 2

qRx

qf 3

qKx

. (30)

This equation leads to the following compact formula:

Rx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ qÞKx � qK2

x

q
with 0pKxp1. (31)

For the stochastic problem the full analytical expression of the Pareto-optimal set is, again, very involved.
By considering a2 ¼ a3 ¼ a, a good approximation has been found and is given below

Rx ¼ Gs €x2
;sFz
ðq; a;KxÞ;

0pKxpKx

(
(32)

the function Gs €x2
;sFz

is reported in the appendix. The deterministic solutions (31) can be found from the
stochastic ones by setting to zero the percentile a.

5.2. Suspension parameters for optimal s €x2 ;sx2�x1

The minimum of the working space ðsx2�x1Þ is at

Rx !1. (33)

The Pareto-optimal set is derived by means of Eq. (21)

qf 1

qKx

qf 2

qRx

¼
qf 1

qRx

qf 2

qKx

. (34)

For the deterministic problem the exact solution of this equation is

RxX0; Kx ¼ 0. (35)

For the stochastic problem an approximate solution of Eq. (34) is

RxX0; Kx ¼ Gs €x2
;sx2�x1

ðq; a2Þ � Rx if Gs €x2
;sx2�x1

ðq; a2Þ 2 R;

RxX0; Kx ¼ 0 otherwise:

(
(36)

The expression of Gs €x2
;sx2�x1

is reported in the Appendix. The optimal set for the stochastic problem
is a sloped line starting from the origin, instead for the deterministic model the optimal set is the Rx-axis,
see Ref. [6].

5.3. Suspension parameters for optimal sx2�x1 ;sFz

The exact analytical expression of the Pareto-optimal set for the deterministic problem is

RxX1; Kx ¼ 1. (37)

For the stochastic problem the Pareto-optimal set is too involved to be useful for technical purposes. The
expression has been approximated with

RxXRx; Kx ¼ Gsx2�x1
;sFz
ðq; a3;RxÞ. (38)

The function Gsx2�x1
;sFz

is reported in the appendix. The Pareto-optimal set for the stochastic problem is a
sloped line, whilst for the deterministic problem it is a line parallel to the Rx-axis, see Ref. [6].

The overall Pareto-optimal set for the three performance indices together is the area bounded by
the bidimensional Pareto-optimal curves s €x2 ; sFz (Eq. (31),(32)), s €x2 ;sx2�x2 (Eq. (35),(36)), sx2�x1 ;sFz

(Eq. (37),(38)). These Pareto-optimal curves are limited by the three points which minimise respectively road
holding, discomfort and working space. Any combination of non-dimensional stiffness and damping that
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belongs to these areas, see Figs. 2 and 8, constitutes an optimal trade-off between the three objective functions.
For sake of simplicity, in the following we have considered a1 ¼ a2 ¼ a3 ¼ a.

Figs. 2 and 8 show the Pareto-optimal sets in the plane of the design variables. Figs. 3 and 4 show the mean
performances of the Pareto-optimal solutions in the domain of the performance indices. The length of vertical
and horizontal bars at each of the marked points represent the standard deviation of the two performance
indices. The influence of the variation of the parameters and variables (given in Table 1) on the performance
indices is reported in Table 2. The weak influence of the variable k2 is manly due to its small coefficient of
variation (CV).

In order to illustrate the advantages of the robust optimisation approach, three Pareto-optimal sets have
been plotted in Fig. 2 for three different values of the percentiles a. The first Pareto-optimal set has been
obtained by setting a ¼ 0 that corresponds to a deterministic optimisation, i.e. only the mean values of the
objective functions are considered. The deterministic optimisation leads to the best mean performances but
with the lowest robustness ðF:P: ¼ :5Þ. On the other hand, we have analysed the optimisation of the variances
only when a!1 which gives the maximum robustness ðF:P:! 0Þ without taking in account the mean
performance. The resulting design is a very stiff and damped suspension with poor mean performances as
shown in Figs. 3 and 4. A good compromise between robustness and performance can be achieved by
considering the third Pareto-optimal set shown in Fig. 2. This optimal region, derived for a ¼ 6, corresponds
to a very small failure probability of F:P: ¼ 10�9 and it has good mean performances with high robustness.
The Pareto-optimal set obtained for a ¼ 6 is indeed similar to the deterministic one in terms of expected values
of the performance indices as shown in Figs. 3 and 4.

Table 3 shows a comparison of the mean and the standard deviation for road holding and working
space between the reference passive suspension (see Table 1) and the points of minimum of the road holding
(marked by means of circle, square and diamond) for the three considered values of the percentiles
ða ¼ 0; 6;þ1Þ.
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Fig. 2. Pareto-optimal design variables for the PS vehicle in non-dimensional coordinates Kx;Rx (Eq. (6)). Road roughness parameter

Ab ¼ 6:9E�6, vehicle speed 20m/s, vehicle data in Table 1. Solid lines refer to the exact analytical equations for a ¼ 0 ðF:P: ¼ 0:5Þ. (1)
s €x2 ;sFz Eq. (31), (2) sx2�x1 ; sFz Eq. (38), (3) s €x2 ;sx2�x1 Eq. (35). Dotted lines refer to the approximated analytical equations for a ¼ 6

ðF:P: ¼ 1E�9Þ: (4) s €x2 ;sFz Eq. (32), (5) sx2�x1 ;sFz Eq. (38), (3) s €x2 ; sx2�x1 Eq. (36). Dash-dotted lines refer to the approximated analytical

equations for a!1 ðF:P:! 0Þ: (6) s €x2 ; sFz Eq. (32), (7) sx2�x1 ; sFz Eq. (38), (8) s €x2 ;sx2�x1 Eq. (36). Points refer to numerical

computations. Points marked by symbols correspond to points in Figs. 3 and 4. The Pareto-optimal sets for a ¼ 0, a ¼ 6 and a!1 are

shown also in Fig. 8.
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Fig. 3. Pareto-optimal set in the performance indices domain s €x2 ;sFz for the PS vehicle: solid line for a ¼ 0, dotted line for a ¼ 6 and

dash-dotted line for a!1. Road roughness parameter Ab ¼ 6:9E�6, vehicle speed 20m/s, vehicle data in Table 1. Design variables in

Fig. 2, points marked by symbols correspond to those in Fig. 2. The vertical and horizontal bars, at each marked point, define the

variations of the two performance indices with respect to their mean values due to uncertain parameters (vehicle mass and tyre stiffness)

and tolerances on design variables (see Table 1).
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Fig. 4. Pareto-optimal set in the performance indices domain sx2�x1 ;sFz for the PS vehicle: solid line for a ¼ 0, dotted line for a ¼ 6 and

dash-dotted line for a!1. Road roughness parameter Ab ¼ 6:9E�6, vehicle speed 20m/s, vehicle data in Table 1. Design variables in

Fig. 2, points marked by symbols correspond to those in Fig. 2. The vertical and horizontal bars, at each marked point, define the

variations of the two performance indices with respect to their mean values due to uncertain parameters (vehicle mass and tyre stiffness)

and tolerances on design variables (see Table 1).
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Table 2

Effect of the parameters and variables variations on the deviations of the performance indices

PS vehicle model AS vehicle model

sx2�x1 s €x2 sFz sx2�x1 s €x2 sFz

sk2 — 1% 1% — — —

sr2 55% 23% 25% — — —

sk1 — 25% 68% 20% 50% 70%

sm2
45% 51% 6% 80% 50% 30%

Road roughness parameter Ab ¼ 6:9E�6, vehicle speed 20m/s, vehicle data in Table 1.

Table 3

Comparison of mean and standard deviation of road holding ðf 1Þ and working space ðf 2Þ between the reference passive suspension and the

minimum of road holding for PS and AS vehicle models for three different values of the percentiles

Reference PS suspension f 1 f 2 sf 1 sf 2

203 (N) 4.24 (mm) 15.2 (N) .282 (mm)

PS suspension ða ¼ 0Þ �9:4% �20:8% �9:2% �20:9%
PS suspension ða ¼ 6Þ �6:4% �26:9% �21:7% �26:9%
PS suspension ða!1Þ þ21:6% �39:9% �40:1% �39:7%
AS suspension ða ¼ 0Þ �14:8% �28:3% �12:5% �95:6%
AS suspension ða ¼ 6Þ �13:3% �34:9% �23:0% �95:8%
AS suspension ða!1Þ �7:9% �42:7% �26:9% �96:3%

Road roughness parameter Ab ¼ 6:9E�6, vehicle speed 20m/s, vehicle data in Table 1.
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6. Pareto-optimal set for the AS model

The considered design variables are G1x and G2x, the functions to be minimised are h1, h2 and h3

(Eq. (25–27)). The following subsections describe the computation of the Pareto-optimal set in the domain of
the design variables for the combinations of two performance indices. The Pareto-optimal set in the plane of
the performance indices can be derived by substitution.

6.1. Suspension parameters for optimal sx2�x1 ;sFz

The minimum of the road holding in the deterministic case (a3 ¼ 0) is simply obtained by setting (see
Ref. [7])

G1x ¼
2ð1þ qÞ

1þ 2q
; G2x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 4q
p

1þ 2q
. (39)

By considering the stochastic problem the analytical expressions of G1x and G2x which define the minimum
of the road holding are too complex to be used. Approximate expressions are given in the appendix. The
minimum of the working space is obtained at

G1x !1. (40)

The analytical expression of the Pareto-optimal set in the deterministic case can be derived by means of
Eq. (21)

qh2

qG1x

qh3

qG2x

¼
qh2

qG2x

qh3

qG1x

. (41)
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This equation leads to

G2x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qG1x

1þ 2q

G1x �
1þ2q
2ð1þqÞ

G1x �
2

1þ2q

 !vuut with G1xX
2ð1þ qÞ

1þ 2q
. (42)

By considering the stochastic problem with a1 ¼ a3 ¼ a, a good numerical approximation has proven to be

G1xXG1x; G2x ¼ C1
sx2�x1

;sFz
ðq; a;G1xÞ if ao15;

G2xpG2x; G1x ¼ C2
sx2�x1

;sFz
ðq; a;G2xÞ if a!1:

8<
: (43)

The functions C1
sx2�x1

;sFz
and C2

sx2�x1
;sFz

are reported in the appendix.

6.2. Suspension parameters for optimal s €x2 ;sx2�x1

The minimum of the discomfort is

G2x !1 or G1x ¼ 0. (44)

The Pareto-optimal set has been derived by means of Eq. (21)

qh1

qG1x

qh2

qG2x

¼
qh1

qG2x

qh2

qG1x

. (45)
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Fig. 5. Pareto-optimal design variables for the AS vehicle in non-dimensional coordinates G1x;G2x (Eq. (10)). Road roughness parameter

Ab ¼ 6:9E�6, vehicle speed 20m/s, vehicle data in Table 1. Solid lines refer to the exact analytical equations for a ¼ 0 ðF:P: ¼ 0:5Þ:
(1) s €x2 ; sFz Eq. (48), (2) sx2�x1 ; sFz Eq. (42). Dotted lines refer to the approximated analytical equations for a ¼ 6 ðF:P: ¼ 1E�9Þ: (3)

s €x2 ; sFz Eq. (49), (4) sx2�x1 ;sFz Eq. (43). Dash-dotted lines refer to the approximated analytical equations for a!1 ðF:P:! 0Þ: (5)

s €x2 ; sFz Eq. (49), (6) sx2�x1 ; sFz Eq. (43), (7) s €x2 ;sx2�x1 Eq. (47). Points refer to numerical computations. Points marked by symbols

correspond to points in Figs. 6 and 7. The Pareto-optimal sets for a ¼ 0, a ¼ 6 and a!1 are shown also in Fig. 8.
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For the deterministic problem the exact solution of this equation is

G1xX0; G2x !1. (46)

For the stochastic problem an approximate solution of Eq. (45) is

G1xX0; G2x ¼ Cs €x2
;sx2�x1

ðq; a1Þ if Cs €x2
;sx2�x1

2 R;

G1xX0; G2x !1 otherwise:

(
(47)

The function Cs €x2
;sx2�x1

is reported in the appendix.

6.3. Suspension parameters for optimal s €x2 ;sFz

The analytical expression of the Pareto-optimal set for the deterministic problem is

G2xX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 4q
p

1þ 2q
; G1x ¼

2ð1þ qÞ

1þ 2q
. (48)

The analytical expression of the Pareto-optimal set for the stochastic problem is too involved for practical
purpose and so it has been approximated with

G2xXG2x; G1x ¼ Cs €x2
;sFz
ðq; a1;G2xÞ. (49)

The function Cs €x2
;sFz

is reported in the appendix. The optimal set for the stochastic problem is a sloped line
while for the deterministic problem it is a line parallel to the G2x-axis [7].

The overall Pareto-optimal set for the three performance indices together is the area bounded by
the bidimensional Pareto-optimal curves s €x2 ;sFz (Eqs. (48),(49)), s €x2 ; sx2�x2 (Eqs. (46),(47)), sx2�x1 ;sFz
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Fig. 6. Pareto-optimal set in the performance indices domain sx2�x1 ; sFz for the AS vehicle: solid line for a ¼ 0, dashed line for a ¼ 6 and

dash-dotted line for a!1. Road roughness parameter Ab ¼ 6:9E�6, vehicle speed 20m/s, vehicle data in Table 1. Design variables in

Fig. 5, points marked by symbols correspond to those in Fig. 5. The vertical and horizontal bars, at each marked point, define the

variations of the two performance indices with respect to their mean values due to uncertain parameters and tolerances on design variables

(see Table 1).
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(Eqs. (42),(43)). These Pareto-optimal curves are limited by the three points which minimise respectively road
holding, discomfort and working space. Any combination of non-dimensional controller gains that belongs to
these areas, see Figs. 5 and 8, constitutes an optimal trade-off between the three objective functions. For sake
of simplicity we have considered a1 ¼ a2 ¼ a3 ¼ a.

Figs. 5 and 8 show the Pareto-optimal sets in the plane of the design variables, Figs. 6 and 7 show instead
the mean and standard deviation of the performances indices for the Pareto-optimal solutions. Table 2 shows
that the variation of the working space is mainly due to the variation of the sprung mass m2 while the variation
of the road holding is mainly due to the variation of the tyre radial stiffness k1.
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Fig. 7. Pareto-optimal set in the performance indices domain s €x2 ;sFz for the AS vehicle: solid line for a ¼ 0, dashed line for a ¼ 6 and

dash-dotted line for a!1. Road roughness parameter Ab ¼ 6:9E�6, vehicle speed 20m/s, vehicle data in Table 1. Design variables in

Fig. 5, points marked by symbols correspond to those in Fig. 5. The vertical and horizontal bars, at each marked point, define the

variations of the two performance indices with respect to their mean values due to uncertain parameters and tolerances on design variables

(see Table 1).

Rx

K
x

G2x

G
1x

Fig. 8. Pareto-optimal sets in the design variables domain for the PS (left) and AS (right) vehicles. Pareto-optimal design variables are

derived for a ¼ 0 (�45� hatch), a ¼ 6 (þ45� hatch) and a!1 (vertical hatch).
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In Fig. 5 three Pareto-optimal sets have been plotted for three different values of the percentiles a. The
deterministic ða ¼ 0Þ and robust ða!1Þ Pareto-optimal sets have proved to be completely different. By
increasing the robustness from a ¼ 0 to a ¼ 6, the resulting Pareto-optimal set is instead very similar to the
deterministic one by moving to a higher value of G1x, see Fig. 8.

A comparison in terms of mean and standard deviation of road holding and working space between the
reference passive suspension and the points of minimum of road holding (marked by means of circle, square
and diamond) for the three analysed values of the percentiles is shown in Table 3.
7. Conclusion

The paper presents and applies a multi-objective stochastic optimisation method. A 2 dof linear model has
been used to describe in analytical form the dynamic behaviour of vehicles while running on randomly profiled
roads. The road irregularity is considered a Gaussian random process and modelled by means of a simple
exponential PSD. Discomfort, road holding and working space are the considered performance indices. The
design variables are the suspension stiffness and damping (PS vehicle) and the controller gains (AS vehicle).
The uncertainties and variations in parameters and design variables have been taken in account by means of a
robust approach which involves the minimisation of a weighted sum of mean and standard deviation of each
objective function.

The analytical formulae relating the performance indices to the design variables have been derived in an
effective non-dimensional form. Additionally, the Fritz–John necessary condition for Pareto-optimality has
been re-formulated allowing to derive analytically (whenever possible) the expression of the Pareto-optimal
set. The optimal trade-off solutions have been derived in a deterministic and in a stochastic framework. These
results constitute useful analytical rules for the preliminary design of road vehicle suspension systems.

A comparison between the three different optimisation approaches—namely deterministic, robust and
stochastic—has been performed. It is shown that the solutions computed by means of a deterministic
optimisation have the best obtainable mean performance but are prone to be the most sensitive to parameter
uncertainty. In contrast, the optimal solutions computed accounting only for robustness are completely
different from the deterministic ones and so they are not efficient in terms of expected performances.
Moreover, the advantage of the robust design approach ða!1Þ, in terms of failure probability, is negligible
in comparison with the loss of mean performance. The optimisation of the mean and of the standard deviation
ða ¼ 6Þ leads to a good compromise between robustness and performance, so it should be considered as the
standard optimisation technique for complex systems design.
Appendix

Minimum of the road holding for the PS vehicle:

Kx ¼ 5þ :185
a23

a23 þ 10

1

q
� 7

� �� � a1:27
3

a1:27
3
þ14

� �
;

Rx ¼ 1:77

a:84
3

a:84
3
þ12

� �
:

8>>>>>><
>>>>>>:

(50)

Minimum of the road holding for the AS vehicle:

G1x ¼
2ð1þ qÞ

1þ 2q
1þ

:64a3ð1þ 2:15qÞ

a3 þ 7

� �
;

G2x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 4q
p

1þ 2q
1þ :203�

:0029

q

� �
ð1þ :0083eð1:98�:005a3Þ � :7eð:4�:29a3ÞÞ

� �
:

8>>><
>>>:

(51)

Approximate functions for the computation of the Pareto-optimal sets:
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In Eq. (32):

Gs €x2
;sFz
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ a=10

� �
ðð1þ qÞKx � qK2

xÞ

s
þ

Rx

Kx

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ a=10

� �
1þ q

Kx

� q

� �s !
Kx. (52)

In Eq. (36):

Gs €x2
;sx2�x1

¼
1

q

1:56
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 þ 3:8a2 þ 24:5

q
� a2 � 11:5

a2 þ 3:8

0
@

1
A

0
@

1
A

1=2

. (53)

In Eq. (38):

Gsx2�x1
;sFz
¼

:92ffiffiffi
q
p eð�7:4ðlnða3ÞÞ

�2:8Þ

� �
ðRx � RxÞ þ Kx. (54)

In Eq. (43):

C1
sx2�x1

;sFz
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4qð1þ qÞ2

3þ 4q

G1x

G1x

G1x

G1x
�

1þ2q
2ð1þqÞ

� �2
G1x

G1x
ð1þ qÞ � 1

vuuut � 1

0
BB@

1
CCAða:01ð6q2 � :123Þ þ 1ÞG2x þ G2x, (55)

C2
sx2�x1

;sFz
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

G2x�1:36

G2x�1:36

� �2
� 2

G2x�1:36

G2x�1:36

� �
þ 1

7
G2x�1:36

G2x�1:36

vuuut þ G1x � 1. (56)

In Eq. (47):

Cs €x2
;sx2�x1

¼
2a1ð1þ qÞ � 10þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a1ð2þ 6qþ 5q2Þða1 � 10Þ þ 100ð1þ 2qÞ2

q
a1ð2þ 3qÞ � 20ð1þ qÞ

2
4

3
5
1=2

. (57)

In Eq. (49):

Cs €x2
;sFz
¼ :138

a1:381

a1:381 þ 75

� �
ðG2x � G2xÞ þ G1x. (58)
References

[1] D. Hrovat, Applications of optimal control to advanced automotive suspension design, Transactions of the ASME, Journal of

Dynamic Systems Measurement and Control 115 (1993).

[2] M. Mitschke, Dynamik der Kraftfahrzeuge, Springer, Berlin, 1990.

[3] R. Sharp, D. Crolla, Road vehicle suspension system design—a review, Vehicle System Dynamics 16 (3) (1987).

[4] C. Dodds, J. Robson, The description of road surface roughness, Journal of Sound and Vibration 2 (31) (1973) 175–183.

[5] K. Kamash, J.D. Robson, The application of isotropy in road surface modelling, Journal of Sound and Vibration 1 (57) (1978) 89–100.

[6] M. Gobbi, G. Mastinu, Analytical description and optimization of the dynamic behaviour of passively suspended road vehicles,

Journal of Sound and Vibration 3 (245) (2001) 457–481.

[7] M. Gobbi, G. Mastinu, Symbolical multi-objective optimisation of the dynamic behaviour of actively suspended road vehicles,

International Journal of Vehicle Design 28 (1–3) (2002) 189–213.

[8] P. Venhovens, Optimal Control of Vehicle Suspensions, Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1994.

[9] J. Dixon, Tyres, Suspension and Handling, Cambridge University Press, Cambridge, 1991.

[10] A. Thompson, Suspension design for optimum road-holding, SAE Paper 830663, 1983.

[11] G. Mastinu, Automotive suspension design by multi-objective programming, Proceedings of the International Symposium on Advanced

Vehicle Control AVEC94, JSAE, 1994.

[12] M. Gobbi, G. Mastinu, C. Doniselli, Optimal and robust design of a road vehicle suspension system, Vehicle System Dynamics

(Supplement 33) (1999).



ARTICLE IN PRESS
M. Gobbi et al. / Journal of Sound and Vibration 298 (2006) 1055–10721072
[13] R. Caballero, et al., Efficient solution concepts and their relations in stochastic multiobjective programming, Journal of Optimization

Theory and Applications 1 (110) (2001) 53–74.

[14] J. Pauwelussen, H. Pacejka (Eds.), Smart Vehicles, Swets Zeitlinger Publishers, 1995.

[15] P. Mueller, W. Schiehlen, Linear Vibrations, Martinus Nijoff, Dordrecht, 1985.

[16] A. Papoulis, Probability Random Variables, and Stochastic Processes, McGraw-Hill, New York, 1985.

[17] G. Mastinu, Passive automobile suspension parameter adaptation, Proceedings of the IMechE Conference—Advanced Suspensions,

Institution of Mechanical Engineers, London, 1988.

[18] K. Miettinen, Nonlinear Multiobjective Optimization, Kluwer Academic Publishers, Boston, 1999.

[19] R. Statnikov, J. Matusov, Multicriteria Optimization and Engineering, Chapman & Hall, New York, 1995.

[20] F. Levi, M. Gobbi, G. Mastinu, An application of multi-objective stochastic optimisation to structural design, Journal of Structural

Optimisation (2004).

[21] P.Y. Papalambros, D.J. Wilde, Principles of Optimal Design, Cambridge University Press, Cambridge, 2000.

[22] M.S. Phadke, Quality Engineering using Robust Design, Prentice-Hall, Englewood Cliffs, NJ, 1989.

[23] J. Reimpell, H. Stoll, Fahrwerktechnik : StoX -und Schwingungsdämpfer, VOGEL Buchverlag Würzburg, 1989.
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